
B. COMPUTATIONAL PART 

 

B.1. PHYSICAL BASIS OF HEAT PROPAGATION 

 

B.1.1. Quantities, symbols, units 

 

Temperature, temperature difference 

 

 

 .................................. temperature   °C ............... degree Celsius 

 .................................. thermodynamic temperatureK  ................... kelvin 

 =2 -1 ................. temperature difference  °C, K 

 =2 -1 ................ temperature difference  °C, K 

 

 Both temperature and temperature difference are scalar quantities. The temperature 

field is a scalar field. Relationships between temperatures : 

 

    °C + 273.15 = K 

 

Heat 

 

Q .................................. heat   J ............................... joule 

 

 

Heat is a form of energy. Relationships between units of : 

 

 

unit J Wh cal kpm erg 

J 1 2.778 10-4 0.239 0.102 107 

Wh 3600 1 860 367.1 3.6 1010 

cal 4.186 1.163 10-3 1 0.427 4.186 107 

kpm 9.807 2.724 10-3 2.343 1 9.807 107 

erg 10-7 2.778 10-11 2.389 10-8 1.020 10-8 1 

 

 

 

Heat capacity ( stored heat ) 

 

 Q = m c   ( J ; kg , J kg -1 K-1 , K ) 

 

m .................................. weight of the body 

c .................................. specific heat capacity (specific heat) 

 ................................ temperature difference 

 

 

Specific heat capacity 

 

c .................................. specific heat capacity ( J kg -1 K-1 ) 



Relationships between units : 

 

 

unit J kg -1 K-1 kJ kg -1 K-1 cal kg -1 K-1 kcal kg -1 K-1 

J kg -1 K-1 1 10-3 0.2389 0.2389 10-3 

kJ kg -1 K-1 103 1 238.9 0.2389 

cal kg -1 K-1 4.186 4.186 10-3 1 10-3 

kcal kg -1 K-1 4186 4.186 103 1 

 

 

Heat output 

 

Heat output is heat per unit time. It is a scalar. 

 

P .................................. heat output  W .............................. watt 

 

 

Heat flux density 

 

 Heat flux density is the heat output per unit area. It is a vector - it has a direction given 

by the normal to the area element dA under consideration. 

 

q .................................. heat flux density ( W m-2 ) 

 

  q = dP / dA 

 

Example 1 : 

 How many kcal/hr is 10 W ? 

Solution : 

 10 (W) = 10 (J/s) = 10 3600 / 4186 (kcal/hr) = 8.6 (kcal/hr) 

 

Example 2 : 

 How many cal is the value of 5 Wh ? 

Solution : 

 5 (Wh) = 5/3600 (W/s) = 5/3600 cal/4.186 = 4300 (cal) 

 

Example 3 : 

 What will be the specific resistance of aluminium in m if it is equal to 0.03 in 

mm2 /m ? 

  

         ( 3 10 -8 m) 

Example 4 : 

 What will be the current density in A/m2 , if it is equal to 5 in A/mm2 ? 

     

         ( 5 106 A/m2 ) 

Example 5 : 

 How many kpm is 3 cal ? 

         



         ( 1.278 kpm) 

B.1.2. Relationship between thermal and mechanical energy 

 

 For practical purposes, it is useful to realise the relatively significant mechanical work 

involved in heat energy of the order of one kilocalorie. This will be documented by the 

following examples : 

 

Example 1 : 

 How much cement could be loaded onto a 2m high truck using the energy required to 

heat 1 litre of water by 20°C ? The loading  efficiency is = a, 100 % 

      b, 50 % 

 

Solution : 

 Thermal energy required : 

 Q = m c = 1 4.186 10 3 20 = 8.372 104 J 

  

 Energy required for loading : 

 W = m g h /    g ......... gravitational acceleration 

      h ......... loading height 

       ......... loading efficiency 

 

 From the equation Q = W determine the mass of the load : 

 

 a, m = Q / ( g h ) = 8.372 104 1 / ( 2 9.806 ) = 4.267 103 kg 

 

 b, m = 8.372 104 0.5 / ( 2 9.806 ) = 2.134 103 kg 

 

 The results show that the energy required to brew a few cups of tea would be enough 

to load a few tens of cents of cement onto a car or wagon. 

 

Example 2 : 

 How many times more energy intensive is a litre of hot tap water than a litre of cold 

water ? Both waters are drawn from the same source at a temperature of1 = 10 °C up to a 

height of h = 100 m. The cold water is taken directly at the point of consumption, the hot 

water is heated at the point of consumption to2 = 70 °C. 

 

Solution : 

 We consider the efficiency of pumping by pump with electric motor in relation to the 

primary energyč = 0.15 ( power plant = 0.3 ; motor with pump = 0.5 ). We consider 

heating by coal with efficiencyo = 0.5. 

 

 Energy required for cold water ( based on 1 litre): 

 

 Ws = m g h /č = 1 9.806 100 / 0.15 = 6538 J 

 

 Energy required for hot water ( based on 1 litre): 

 Wt = m g h /č + m c (2 -1 ) / o 

 Wt = 1 9.806 100 / 0.15 + 1 4.186 103 (70 - 10) / 0.5 = 6 538 + 502 320 = 508 858 J 



 n = Wt / Ws = 508 858 / 6 538 = 77.8 

 

 Hot water is almost 78 times more energy intensive than cold water. 

Example 3 : 

 What wattage would a direct-fired electric instantaneous heater  have to have to 

make hot water flow out of a 10 mm diameter tap2 = 60 °C at v = 2 m/s ? The water is 

heated from a temperature of1 = 10 °C. The heating efficiency is 97%. How many 

fluorescent lamps of 40 W could shine at this wattage ? 

        ( 33.5 kW , 838 fluorescent lamps ) 

 

Example 4 : 

 How many times more energy does it take to heat 10 litres of water by 10°C than to 

raise that 10 litres of water to a height of 10m ? Consider both the heating efficiency and the 

lifting efficiency to be 100% . 

  

         ( 427 times more ) 

Example 5 : 

 By how many degrees Celsius will the water in a 200 meter high waterfall heat up if all 

of its positional energy is converted to heat ? From what height would the water have to fall 0 

°C warm to boil ? 

   

        ( 0.47 °C, 42 692 m ) 

 

Example 6 : 

 Fill a bath with 100 litres of 37°C  warm water heated from 10°C. How high would 

we have to raise this water to make the position energy of the water equal to the energy 

required to heat it ? The heating efficiencyo is equal to the lifting efficiencyz . 

   

         ( 11 527 m ) 

 

Example 7 : 

 By how many °C will 1kWh of energy  heat 20 litres of water at a heating 

efficiency of 90% ? How many people weighing 80 kg will 1 kWh of energy transport from 

the ground floor to the fifth floor (23 m) in a lift with an efficiency of 60% ? 

         ( 38.7 °C , 120 people ) 

 

B.1.3. Warming and cooling processes 

The dependence of temperature on heating time is expressed by the warming curve :  
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The dependence of temperature on cooling time is expressed by the cooling curve :  
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Example 1 : 

How long does it take to heat water from 20 °C to 100 °C if it cools from 40 °C to 30 °C in 10 

minutes ? The cooling process takes place between 100 °C and 20 °C, the time constant of 

warming is equal to the time constant of cooling. Consider the completed process in terms of 

three time constants. 

 

Solution : 

  Warming curve :   Cooling curve : 
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We know two points on the cooling curve that must satisfy its 

equation: 
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Dividing equation ( 1 ) by equation ( 2 ) gives an equation of one unknown : 
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We logarithm this equation and calculate the unknown : 
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 Where 1 =1 -0 = 40 - 20 = 20 °C 

  2 =2 -0 = 30 - 20 = 10 °C 

 

  t2 - t1 = 10 min = 600 sec 
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  3  = 3 865.6 = 2596.9 sec 

 

B.1.4. Heat transfer by conduction 

 

 The heat is spread in three ways, either separately or, more purely, in various 

combinations : 

1. by conduction ( conduction ) 

2. by flow ( convection ) 

3. radiation (radiation ) 

 

 For heat transfer by conduction, we define the thermal conductivity coefficient as a 

material constant characterizing the ability of a given substance to transfer heat by conduction 

(this ability is directly proportional to the magnitude of this coefficient).The unit of the 

thermal conductivity coefficient is W m K-1-1 and its values for different materials are given 

in the table : 

 

 For heat conduction, the relation : 
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 which for a homogeneous temperature relation goes to the form : 
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 The following examples show how to solve some specific cases of heat conduction. 

 

 

 



Example 1 - Plane wall : 

 

 Determine the heat output through a wall with thickness l = 50 mm and area S = 1 m2 . 

The temperature on the outer surface of the wall is1 = 100 °C , on the inner surface2 = 90 

°C. The wall is : 

 

a, steel , = 40 W . m-1 . K-1 

b, concrete , = 1.1 W . m-1 . K-1 

c, diatomaceous , = 0.11 W . m-1 . K-1 

 

Solution : 

  
l

S
P    ( W ; W.m-1 .K-1 , m2 , m , K ) 

a, P = 40 .
05,0

1
 . ( 100 - 90 ) = 8 000 W 

b, P = 1.1 .
05,0

1
 . ( 100 - 90 ) = 220 W 

c, P = 0.11.
05,0

1
 . ( 100 - 90 ) = 22 W 

 

Example 2 - Composite plane wall : 

  

 Determine the heat flux through the boiler wall. The wall is covered with a layer of 

soot with a thickness of l1 =1 mm,1 =0.08 W.m-1 .K-1 and on the water side there is a boiler 

stone with a thickness of l3 =2 mm,3 =0.8 W.m-1 .K-1 . The boiler wall has a thickness of l2 

=12 mm,2 =50 W.m-1 .K-1 . The wall temperature on the water side is4 =206°C , on the 

heating side1 =685°C. Determine the heat flux density q , the temperatures at the interface of 

the layers , the mean temperatures of the layers. The boiler wall has an area S=10 m2 . 

 

Solution : 

 

Heat flux density : 
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 = 31 430 W. m-2 

 

 

 

Interface temperatures : 

 

soot - boiler 



  2 =1 - q .

1

1l


 = 685 - 31 430 .

08,0

001,0
 = 292.12 °C 

water stone - boiler 

  3 =4 + q .

3

3l


 = 206 + 31 430 .

8,0

002,0
 = 284.58 °C 

Mean layer temperatures : 

 

soot 
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Heat flux : 

  P = q . S = 31 430 . 10 = 3,143 . 105 W 

 

 

Example 3 - Composite plane wall , temperature dependent : 

 

 Determine the heat loss through the double-layer wall of the heating furnace. A base 

fireclay layer with a thickness of lS  = 230 mm ,S0 = 0.971 W.m-1 .K ,-1S = 0.00058 is 

insulated with a porous fireclay with a thickness of liz = 115 mm ,izo = 0.23 W.m-1 .K ,-1iz = 

0.0002 . On the inside of the masonry the temperature is1 = 930 °C , on the outside of the 

insulation the temperature is3 = 70 °C. This is =o +stř , wherestř is the mean layer 

temperature. 

 

Solution : 

 

1, Estimate the temperature at the layer interface - e.g.20 = 500 °C 

2, Calculate the mean temperature of the layers : 

 

Fireclay :  715
2
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2
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3, Calculate the thermal conductivity at a given mean layer temperature : 

 



Fireclay :  sI =S0 + S sI = 0.971 + 0.00058 715 = 1.386 W.m-1 .K-1 

 

insulation : izI =iz0 + iz izI = 0.23 + 0.0002 285 = 0.287 W.m-1 .K-1 

 

4, Calculate the heat flux density : 
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5, Calculate the temperature at the interface : 

 

  2I =1 - q .

S

Sl


 = 930 - 1517.7 .

386,1

23,0
 = 678 °C 

 

 Since the calculated temperature at the interface2I = 678 °C differs significantly from 

the estimated temperature20 = 500 °C, we repeat procedure 1, 5, with an input temperature 

at the interface of the layers2I =678 °C. Enter the individual values in the table. 

 

 

Greatness 2 S iz S iz q 2 

Step °C °C °C W.m-1 .K-1 W.m-1 .K-1 W.m-2 °C 

I 500 715 285 1,386 0,287 1517,7 678 

II 678 804 374 1,437 0,305 1601,2 673 

III 673 801,5 371,5 1,436 0,304 1597,2 674 

 

 

Example 4 - Cylindrical wall 

 

 Determine the heat flux density q ( W m-1 ) through the wall of a refractory steel pipe 

with dimensions d1 = 32 mm , d2 = 42 mm. The thermal conductivity coefficient of the 

material of which the pipe is made = 14 W.m-1 .K-1 . The temperature of the outer wall of the 

pipe1 = 580 °C, the temperature of the inner wall of the pipe2 = 450 °C. 

 

Solution : 

 

For a composite cylindrical wall, the heat transfer through the conduction is given by : 
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For a single-layer wall and the values of our assignment : 
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B.1.5. Heat transfer by flow 

 

 Let us introduce the heat transfer coefficient with unit W m K-2-1 , which determines 

how much heat flux ( power ) flows through a unit area at a temperature difference of 1 °C. 

Heat transfer in this way is applied when heat is transferred from a solid surface to the 

surrounding environment or vice versa ( usually in combination with radiation ). 

Heat  propagation by flow is one of the most difficult computational problems in thermal 

engineering. It is dealt with in many scientific literatures. In important cases, it is best to 

determine the heat transfer coefficient ourselves by measuring it on a model as appropriate 

to our case as possible using the given relations in which occurs. 

 Newton's law applies to the transfer of heat through the flow: 

 

 

   P =  S   ( W ; W m K-2-1 , m2 , K ) 

 

 

 

Example 1 - Heat propagation by net flow : 

 

 Determine the heat loss through a vertical wall of area S = 1 m2 . Wall temperature1 = 

60 °C, ambient temperature2 = 10 °C. 

 

and, by natural convection   = 4 ( )0,13 ,  v0 = 0 m s-1 

b, by blowing    = 5,8 + 3,95 v0 ,  v0 = 5 m s-1 

 

 in0 is the flow velocity of the medium at the wall 

 

Solution : 

 

a, P =  S   =  4 ( ) 0,13 S  =  

   = 4 ( 60 - 10 ) 0,13 1 ( 60 - 10 ) = 332,6 W 

 

b, P =  S   =  (5.8 + 3.95 v0 ) S  =  



   = ( 5,8 + 3,95 5 ) 1 ( 60 - 10 ) = 1277,5 W 

Example 2 : 

 Determine graphically the temperature in the wall of the room. The indoor temperature 

is1 = 20 °C, the outdoor temperature5 = -20 °C. The inner wall is brick with a thickness of1 

= 0.36 m, thermal conductivity coefficient1 = 0.464 W m K-1-1 , and there is a layer of 

concrete with a thickness of2 = 0.13 m, thermal conductivity coefficient2 = 1.102 W m K-1-1 

. The heat transfer coefficient of the inner surface is2 = 17.4 W m K-2-1 , the heat transfer 

coefficient of the outer surface is1 = 5.8 W m K-2-1 . 

 

Solution : 

 

1, Draw to scale a section through the composite wall through which the heat flux passes. 

 

2, Mark the indoor and outdoor temperature on the vertical axis. 

 

3, At the internal temperature level, choose the P pole to the right of the wall. 

 

4, Calculate the unit thermal resistances corresponding to the given heat propagation method 

and the given parameters.  

 

5, On the vertical semi-line at any point between the pole P and the composite wall, we will 

apply the unit thermal resistances from the indoor temperature level towards the outdoor 

temperature level in a gradual scale: 

 - flow on the inside of the composite wall 

 - conducting layer of bricks 

 - conduction through the concrete layer 

 - flow on the outside of the composite wall 

 

6, Connect the pole P to the ends of the thermal resistors thus plotted. 

 

7, At the point where the junction of the pole with the end point of the last thermal resistance 

intersects the outdoor temperature level, construct a semi-vertical line in the vertical direction. 

 

8, The intersections of the pole junctions with the endpoints of the unit thermal resistances 

with the semi-line so constructed give us the temperatures at the interface of the individual 

layers : 

 - on the inside of the folded wall 

 - at the interface between two layers of a composite wall 

 - on the outside of the folded wall 

 

9, Plot these temperatures in the appropriate locations on the composite wall. 

 

10, By combining these temperatures we get the desired graphical representation of the 

temperature progression. 

 

 Calculation of unit thermal resistances : 

 

 - flow at the inner surface of the composite wall 
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R 


  W -1 K 

 

 

 - heat conduction through the brick layer 

  0,776
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1
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 - heat conduction through the concrete wall 
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 - flow at the outer surface of the composite wall 

  0,172
5,8

1

1

1

q4
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
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Graphic design : 
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B.1.6. Radiant heat transfer 

 



 Any body whose temperature is above 0 K radiates thermal energy through its surface. 

It is an electromagnetic wave that follows the laws of geometrical optics. 

 

 The laws governing the propagation of heat by radiation : 

a, Stefan-Boltzmann law : 

  Pč = č 
4   (  W m-2 ; W m-2 (K/100)-4 , K ) 

 

Stefan-Boltzmann constantč = 5.6697 W m-2 (K/100)-4 

    

b, Planck's law : 

  Mč = f ( , ) =
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 c1 = 3.73 10-16 W m2 

 c2 = 1,438 10-2 m K 

 

c, The law of Wien : 

  m = (


2892
  m ; K ) 

 

d, Heat output transferred between two parallel, equal sized surfaces. Each with a surface A, 

one with temperature1 and emissivity1 and the other with temperature2 and emissivity2 : 
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e, Two surfaces, of which A2 completely surrounds the smaller A1 : 
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Example 1 : 

 Determine Pč ,m , Mmč of an absolutely black body with area S = 300 cm2 and 

temperature =1200 °C 

 

Solution :  



 Heat flux ( power ) :  

 Pč = č 
4  S = W000810.300

4

4

100

273.151200
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 The wavelength at which the maximum spectral density of the radiation intensity is : 

    

   m = 2892 / = 2892 / ( 1200 + 273.15 ) = 1.96 m 

 

 

 Spectral intensity density of radiation at wavelength 1.96 m : 
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Example 2 : 

 Determine the heat output radiating from a body of area A1 = 1 cm2 , temperature1 = 

1000 °C, emissivity1 = 0.9 to a body of area A2 = 10 cm2 , temperature2 = 0 °C, 

emissivity2 = 0.9. The second body completely surrounds the first in space. 

 

Solution : 
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B.2. RESISTIVE ELECTROTHERMAL DEVICES 

 

B.2.1. Heating element design 

 

 For the design of heating cells of circular or rectangular cross-section of the resistive 

conductor, we use the following relations : 

 



 

 

 

 

 

a, circular cross section of the resistive conductor : 

 

 3
2Up210

2P4
=d








  ( mm ; mm m2-1 ,W,W cm-2 ,V ) 

 

Where  ....................... specific resistance of the conductor material 

 P ....................... power of one phase of resistance furnace 

 p ....................... voltage on the heating element 

 

b, rectangular cross section : 

 

 

 
3

p2U120

2P
b









 ( mm ; W, mm m2-1 , H,W cm-2 , ) 

 

  a = b  

 

Where  ....................... the aspect ratio of the rectangle 

 

 

The length of the heating conductor is designed either from the relation : 

 

 





P

S2U
l  ( m ; V, mm2 , W ,  mm 2 m-1 ) 

 

whereS  ....................... heating wire cross section 

 

 

or from a relationship  

 

  
pO

P
l


  ( cm ; W , cm , W cm-2 ) 

 

whereO  ....................... heating wire circumference in cm 

 

 

 

Example 1 : 



 Determine the dimensions ( a , b , l )  of the heating strip for heating the 

resistance furnace if the input power of the furnace is P = 75 kW. The heating elements are 

connected in a triangle, the furnace operates in a 3x380/220 V voltage system. The specific 

surface load of the resistive conductor is p = 1.2 W cm-2 , the specific resistance of the 

resistive conductor material is = 1.2  mm 2 m-1 . The aspect ratio of the rectangular cross 

section = 5 . 

Solution : 
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  a =  b = 5 1.93 = 9.66 mm 
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Example 2 : 

 The power of the annealing furnace is P = 60 kW, the annealing temperature is 850 °C. 

The clamp voltage is 3x380/220 V, the heating elements are connected in a triangle. The 

specific surface load of the heating conductor is p = 1.2 W cm-2 , the specific resistance of the 

resistive conductor material at 850 °C = 1.2  mm 2 m-1 . Determine the length and 

diameter of the heating wire of circular cross section for one phase of the furnace. 

 

Solution : 
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B.2.2. Calculation of the heating time 

 

The heating time of an object in a resistance furnace can be calculated according to the 

relation : 

 

  

p
P

s
P

Q
t


  ( s ; J , W , W ) 

 

whereQ  .......................... heat capacity ( the heat that must be put into an object during 

heating            not accumulate ) of the heated object 

 Ps .......................... heat output transferred to an object by radiation 

 Pp .......................... heat output transferred to an object by a flow 

 

Heating curve of the heated object : 

 

 



[ K ]

p





t [ s ]

2

o t2t1

doba ohřevu

= f ( t )

 
 

Valid Ps = f ( ) and Pp = f ( ) , 

 

 where = f ( t ) is the difference between the temperature in the furnace and the 

temperature of the heated object. 

 

To simplify the calculation, I replace the exponential by the parabola : 

 



 

 

t2 t

 = f ( t )



t

t2

stř

b

a

 
 

 Find the mean difference in temperature ( in the furnace and the heated object ) over 

the heating time from the equality of the areas of the rectangle stř t2 and the area labeled b 

in the figure: 
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  b = stř t2  = > stř = 
3

2
2 

 

 In a simplified calculation, I include the heat output transferred by the radiant in the 

heat transfer coefficients+p (s+p >p ). 

 

The heating  time can then be calculated simplistically according to the relation : 
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  ( s ; J , W m -2 K-1 , K , m2 ) 

 

Where  s+p ....................... heat transfer coefficient including both radiation and flow 

 p ......................... oven temperature 

 stř ........................ mean temperature of the heated object during the heating period 

    (stř =o + 2 / 3 (2 -o ) ) 

 o ......................... ambient temperature ( of the object before the start of heating ) 

 S .......................... the area through which heat is transferred to  the heated object 

 Q ......................... heat accumulated in the object during heating 

 



 When calculating the exact heating time of an object in a resistance furnace, we 

consider the exponential temperature rise of the heated object. We divide the heating interval 

into sections within which we linearize the temperature rise. 

 

    We choose the division so that the time intervals are approximately the same length. 
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The duration of each interval is then calculated from the relation: 
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kdem ........................ weight of heated object 

 c ......................... specific heat of the heated object 

i´ ,i-1 ´ ......................... boundary temperatures of the calculated interval 

1     ,2 ......................... emissivities of the surface of the heated object and the inner surface 

of the furnace 

p   ,p .......................... temperature and thermodynamic temperature in the furnace 

    (p =p + 273.15 ) 

 Ss ........................ the area over which heat is transferred to the heated object by 

radiation 



 Sp ........................ the area over which heat is transferred to the heated object by the 

flow of 

 p ........................ heat transfer coefficient for flow 

stř i ,stř i ....................... mean temperature and mean thermodynamic temperature of the 

heated      of the object within the calculated interval 

    (stř i = (i ´ +i-1 ´ ) / 2 ) 

    (stř i =stř i + 273.15 ) 

 

 The total heating time of the object in the resistance furnace is then determined as the 

sum of the partial intervals calculated as above. 

 

Example 1 : 

 Calculate the heating time of three prisms of dimensions 100 x 100 x 1000 mm in a 

chamber furnace. Three prisms are heated simultaneously in the furnace from an ambient 

temperature ofo = 10 °C to a temperature ofH = 800 °C. The temperature in the furnace 

during the heating period isp = 850 °C. 

 The prisms are steel :H = 7.8 kg dm-3 , c = 0.667 kJ kg -1 K-1 . The emissivity of the 

surface of the prisms is1 = 0.8 , the emissivity of the inner surface of the furnace is2 = 0.8 . 

The heat transfer coefficient for flow and radiation iss+p = 177.8 W m -2 K-1 , the heat 

transfer coefficient for flow isp = 14 W m -2 K-1 . 

 Make an approximate calculation of the heating time under the following conditions : 

a, heat is transferred from above and below by radiation and convection 

b, radiation is included in the heat transfer coefficient s+p 

 Next, perform an accurate calculation of the heating time of the prisms under the 

assumptions that 

and, heat is transferred by radiation from above and below 

b, heat is transferred by flow over the entire surface of the system. 

 

Heating interval distribution for accurate calculation : 
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Solution : 

 

Approximate calculation : 
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Exact calculation: 
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Calculate the length of the remaining intervals in a similar way: 

 

 - second interval tII  = 839 s 

 - third interval  tIII = 842 s 

 - fourth interval tIV = 928 s 

 - fifth interval  tV  = 831 s   
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The total heating time of the prisms is obtained as the sum of the partial time intervals. 

 

Electric resistance furnace design 

 

 The following assignment is intended to enable you to practice the topics covered so 

far and to become aware of the interrelationships and practical application of computational 

procedures in  the form of an independently developed program. 

 

 

Assignment : 

 

Design a crucible resistance furnace for melting aluminium and determine : 

 

 1. Furnace dimensions 

 2. Amount of heat required to melt aluminium 

 3. Temperature of the spirals 

 4. Heat losses including graphical representation of the temperature evolution in the 

composite cylindrical wall 

 5. Power input and power consumption 

 6. Accumulated heat 

 7. Time required to place the first bet 

 8. Dimensions of heating elements, electrical wiring diagram including regulation, 

sizing of inlets and protection. 

 

Default values : 

 

 Default betting temperature . . . . . . . . . . . . . . . 1 = 20 °C 

 Melting temperature of aluminium  . . . . . . . . . . . . . . . tav = 658 °C 

 Casting temperature of the wedge  . . . . . . . . . . . . . . . 2 = 750 °C 

 Weight of the bet  . . . . . . . . . . . . . .  . m = 80 kg 

 Bet density  . . . . . . . . . . . . . . Al = 2.7 103 kg m-3 

 Heating time   . . . . . . . . . . . . . .  . t = 65 min 

 Heat transfer coefficient . . . . . . . . . . .  . = 11.6 W m -2 K-1 

 Specific heat of aluminium . . . . . . . . . . . . .  . c1 = 0.894 kJ kg -1 K-1 

 Specific heat of aluminium . . . . . . . .  . c2 = 397.1 kJ kg-1 

 The specific resistance of the spiral material. . . . . . . .  = 1.1  mm 2 m-1 

 Density of resistive material. . . . . . .  = 8.27 103 kg m-3 

 Allowable surface load . . . . . . . .  . p = 10 700 W m-2 

 Emissivity of the surface of the spirals . . . . . . . . . . . . . . . 1 = 0.85 

 Emissivity of the crucible surface . . . . . . . . . . . . . . . 2 = 0.85 

 Specific thermal conductivity 

  Tercalite  . . . . . . . . . . . . . . t = 0.278 W m -1 K-1 

  silocel . . . . . . . . . . . . . . . s = 0.232 W m -1 K-1 

  Steel  . . . . . . . . . . . . . . . o = 46.4 W m -1 K-1 



 

 

 

 

 

 

Solution : 

 

1. Furnace dimensions 

 

 Volume of aluminium after melting : 
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 I will increase this volume by 50% : 
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 From practical experience we choose the diameter of the cup : 
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 Height of the cup : 
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Round the  height of the cup to : 

 

  mm450v   

 

The dimensions of the crucible give me the other dimensions of the furnace - see drawing. 

 

 

2. Amount of heat required to melt aluminium 

 

 Heat required for heating from 20 °C to 750 °C : 

 

    kJ52209.6207500.89480cmQ 11   

 

 The heat required to change state : 

 

  kJ31768=397.180cmQ 22   



 

 

 Total amount of heat to melt aluminium : 

 

  kJ83977.63176852209.6QQQ 21Al   

 

 Schematic representation of a section of the proposed resistance crucible furnace : 

 

 
 

 



3. Temperature of resistance spirals 

 

The surface area of the spiral-irradiated and heat-transferring aluminium : 
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 Required heat flux : 

 

  kW21.533skJ21.533
6065

83977.6

t

Q
P 1Al 


 

 

 

 

 Temperature of the outer wall of the crucible : 
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 Required thermodynamic temperature of resistance spirals : 
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  K11972   

 

 

 Required temperature of resistance spirals : 

 

  C924923.85273.151197273.15 o
2S   

 

 According to this temperature, we would choose the appropriate resistive material for 

the production of heating coils. This temperature will be maintained by the furnace control. 

 

 

4. Heat loss 

 



 Calculate the heat loss under the simplifying assumption that the temperature on the 

inside of the refractory lining (tercalite) is equal to the temperature of the outer surface of the 

crucible on the furnace wall, lid and bottom. 

 

 To calculate the heat flux loss through the furnace wall, I consider a composite 

cylindrical wall with a height of l = 0.85 m : 
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 For the calculation of the heat flux loss through the furnace lid, we consider the mean 

area of the lid in the middle of its thickness S = 0.554 m2 : 
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 For the calculation of the heat loss through the furnace bottom, we consider the same 

surface area as for the lid and the mean thickness of tercalite witht = 0.150 m : 
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 Total heat  loss heat flux of the furnace : 

 

  W29676615641742PPPP dvsz   

 

 Layer interface temperatures for a composite cylindrical furnace wall : 
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silocel - steel casing 
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surface of the steel furnace jacket 
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Graphical representation of the temperature progression through the furnace wall : 
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5. Power input and power consumption 

 

 The input power of the furnace is calculated as the sum of the required heat output 

going into the charge and the lost heat output of the furnace. This sum is increased by 15 % 

for power reserve reasons: 

 

      kW28.221.5332.9671.15PP1.15P zp   

 

 Power consumption per bet : 

 

  kWh30.6
60

65
28.2tPA p   

 

6. Accumulated heat 

 

 The heat accumulated in the individual structural units of the furnace is calculated 

from the known relation : 

 

   cmQ  

 

where is the mean temperature, i.e. the difference between the mean temperature of the 

material during furnace operation and the ambient temperature 

 

 

 

 

Arrange the calculation in a table : 

 

Name Weight 

m 

Specific  

heat c 

Medium 

warming 

Accumulated 

heat Qa 

 [ kg ] [ kJ kg -1 K-1 ] [ K ] [ MJ ] 

The crucible 138 0.5 738.6 50.966 

Lining 110 0.836 550.0 50.578 

Insulation 80 0.670 202.4 10.848 

Lid 30 0.836 400.0 10.032 

Bottom 20 0.836 405.0 6.771 

Cloak 836 0.5 52.0 21.736 

 

Total accumulated heat :        150.931 MJ 

 

 

7. Time required to place the first bet 

 



 This time consists of the time required to heat the furnace from ambient temperature to 

operating temperature - during this time the heat loss rises from zero to the value of the 

calculated loss heat flux PZ - and the time required to melt the charge - during this time the 

loss heat flux has a value calculated as PZ  . During the time the furnace is heated to operating 

temperature we take the heat loss as half of the full loss heat flux PZ  . 

 

 

 Time required to heat the furnace : 
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 The melting time of the bet : 
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 Heat loss during furnace heating : 
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 Heat loss during melting of the charge : 
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 Time required to place the first bet : 
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 Thanks to the power reserve of the furnace and the simplified calculation method, the 

time needed to melt the charge was shorter than the specified time. 

 

 

8. Heating elements, supply, protection, regulation 

 

 We use a resistive material in the form of a heating wire of circular cross-section. 



 

 Cell conductor diameter : 
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 We choose a resistance wire with a diameter of 3 mm, the basic connection of the 

heating elements will be in a triangle. 

 

 Resistance of a single phase cell : 
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 Length of resistance wire for one phase : 

 

  m98.7
101.14

0.00315.36SR
l

6

2















 

 

 Weight of resistance material required for the whole furnace : 
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 Current through the heating element : 
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 Current in the supply wires : 

 

  A42.8324.733I3I fs   

 

 

 The design of the supply cable is carried out in accordance with the standard ČSN 34 

1020 - Regulations for sizing and securing conductors and cables. 

 

 The supply cable should be of type AYKY according to ČSN 34 7656. We assume an 

ambient temperature of max. 40 °C, cable installation on the wall - six cables on a common 



NIEDAX rail. This environment and cable installation corresponds to the correction 

coefficient given in Table 7 and 19 of ČSN 34 1020 with values of 0.84 and 0.67. 

 

 The rated load capacity of the proposed cable shall be at least : 
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 According to Table 59 of the standard CSN 34 1020, we design AYKY 3 x 35 + 25 

mm  cable2 . This cable has a rated load capacity of 93 A. 

 

 For the furnace protection we choose fuses with rated current Inp = 50 A. We have to 

check whether the fuse complies with the condition according to Article 173 of ČSN 34 1020 

: 

 

  

p

Np
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whereI . . . . the  permissible current of the respective conductor stored in an 

environment of temperature  

 

 

 

 

 kp . . .the  coefficient of attachment of the fuse to the conductor, which is stored in 

an environment of temperature - z   Figure 11 in the standard, for Inp = 50 A and an 

ambient temperature of 40 °C , read the value   kp = 1.05 
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 The condition is fulfilled, the 50 A fuse protects the cable against all overcurrents, 

overloads and short circuits. 

 

 Temperature control in the furnace will be implemented by the ZEPAFOT device, 

which switches the heating elements from a triangle to a star  according to two set 

temperatures when the first set temperature is exceeded (thus reducing the furnace input to 

one third) or switches the furnace off when the second set temperature is exceeded. 

 The temperature is sensed by a thermocouple directly from the heating coil and this 

signal is fed to terminals 1 and 2 of the ZEPAFOT. 

 The A1 button switches on the furnace via the S1 contactor. When the heating 

elements are connected in a triangle, the S1 and S2 contactors are switched on, when they are 

connected in a star, the S1 and S3 contactors are switched on. 



 

 

 

 

 

 

 

 

 

 

 

Circuit diagram of temperature control and regulation in resistance furnace : 

 

 



 

 

B.3. ELECTRIC ARC HEATING EQUIPMENT 

 

B.3.1. Circular diagram of an electric arc furnace 

 

The circle diagram of a steel electric arc furnace is constructed from two basic current values : 

 

1. theoretical short circuit current 


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f
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I  

2. current shorted   
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k
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 WhereUf . . . . . . . . . . phase secondary voltage of furnace transformer 

 X . . . . . . . . . . . short path single phase reactance 

 Z . . . . . . . . . . short path single phase impedance 

 

and furthermore, the cosk  power factor, i.e. the phase shift between voltage and current 

when the electrodes short-circuit with the charge.  

While Ikt is a theoretical value and can only be calculated, the current Ik can be calculated 

knowing the design of the short path. However, this value is difficult to calculate due to the 

geometric complexity of the short path and is therefore usually determined by a special 

measurement in a so-called short circuit soak test. In this test, electrodes are immersed in a 

molten bath at a suitably selected voltage level and the short-circuit current Ik and the power 

factor cosk are measured. Instead of the power factor it is possible to measure the active 

power of the supply circuit and the phase voltage (see chapter 5 for more details). 

 

 

Circular diagram of an electric arc furnace. 

 

 

 



The following data can be read from the circle diagram for a given current magnitude : 

 

- power factor cos 

- power supply circuit power P 

- arc power P0 

- power losses on a short journey PZ 

- effectiveness  

 

The scales for reading power factor and efficiency can be constructed as shown. For power 

readings, it is necessary to know the power scale : 

 

   mp = m I Uf ( kW m-1 ; kA m-1 , V ) 

 

Where mI . . . . . . . . . . current scale - usually selected according to the desired diameter   

     of the circle diagram d : mI = Ikt / d 

 ATf . . . . . . . . . . phase secondary voltage of furnace transformer 

 

 Usually a good agreement of the readings with the actual values is not achieved due to 

the simplifications on the basis of which the circle diagram was constructed. 

 

 

Example 1 : 

 The furnace transformer has a 6000/240V voltage ratio. With the electrodes meeting 

the load, the current on the primary side was measured to be I1k = 1520 A. The power factor 

on the secondary side was equal to cos1k = cos2k = 0.25. Construct a circle diagram and 

determine the current for maximum arc power from it. The wiring of the furnace transformer 

is D/d. 

 

Solution : 

 Secondary current shorted : 

 

  I2k = I 1k p = 1520 6000 / 240 = 38 000 A 

 

 Impedance short : 

 

   3
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2
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38000.3

240
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Short path  active resistance : 

 

  R2k = Z 2k cos2k = 3.646 10 -3 0.25 = 9.116 10 -4 

 

 Reactance of the short path : 

 

X = 2k  3222
2k

2
2k 103.5310.00091160.003646RZ  

 

 Theoretical current shorted : 
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 Scale of current : 

 

  mI = I2kT / d = 39246 / 20 = 1962 A cm-1 

 

 Power Scale : 

  mP = U 2f mI = 240 1962 / 3 = 271.862 103 W cm-1 

 

Values read from the diagram : 

 

The current corresponding to the maximum arc power : 

 

  IPmax = 24.7 kA 

 

Maximum arc power : 

 

  Pomax = 2.175 MW 

 

Efficiency corresponding to the maximum arc power : 

 

  cosPmax = 0.78 

 

B.3.2. Furnace transformer control, choke 

 The power supplied to the working area of an electric arc furnace is usually regulated 

in two ways: 

1. stepwise switching of taps on the primary side of the furnace transformer - in this way the 

voltage on the arc changes stepwise 

2. by continuously changing the arc length - this is realized by automatic regulation of 

electrode movement. By increasing the arc length, the current through the furnace circuit 

decreases and vice versa. 

 

Example 1 : 

 Design a four-stage furnace transformer voltage control for an electric arc furnace by 

switching two sections on the primary side of the furnace transformer winding. The secondary 

winding is connected in a triangle. The ratio of the number of turns of the primary winding 

sections is N1 ´=0.262 N1 ´´. The primary voltage on the furnace transformer is 6000 V, the 

secondary voltage when the sections of N1 ´´ are connected in a triangle is 240 V. Calculate 

the secondary voltage for the other three stages of regulation. 

 

Solution :  1st stage of regulation 

 



 

 

 

Secondary voltage of the 1st control stage 

: 

 

 U2I = 240 V

 Level II regulation 

 

 
 

Secondary voltage of the 2nd control stage 

: 

 

 U2II =
U

1.262

240
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190 V2I    

 

 

 

 

 

 

 

 Level III regulation 

 

 

 

 

 

Secondary voltage of control stage III : 

 

 U2III = 
U

3

240

3
138 V2I    

     Level IV regulation 

 



 
 

 

 

 

Secondary voltage of the IV control stage : 

 

 U2IV = 
U

3

190

3
109.4 V2II    



Example 2 : 

 Determine the voltage drop across the secondary side of the furnace transformer 

feeding the electric arc furnace caused by the reactor Un = 550 V, In = 400 A included in the 

primary circuit if the combined primary voltage across the furnace transformer is equal to U1 

=6200V. 

 

a, if U2 = 220 V, I1 = In 

b, if U2 = 160 V, I1 = In / 2 

 

Solution : 

 
 

 The cumulative voltage drop on the secondary side of the furnace transformer can be 

calculated from the relation : 

   uII = uI  p  3 

 

wherep  . . . . . . . . . . furnace transformer conversion 

 AtI . . . . . . . . . . voltage drop on the primary side of the furnace transformer 

 

a, uII = Un  UII / U I  3 = 550 220 / 6200  3 = 33.8 V 

 

b, uII = 550 / 2 160 / 6200  3 = 12.3 V 

 

 

Example 3 : 

 The electric arc furnace is powered by a furnace transformer with a rated apparent 

power of Sn = 6 MVA. The conversion is 6000/240 V when connected to Dd0. The short-

circuit voltage of the furnace transformer is atk = 5%. The leads to the furnace have a 

reactance of 5% ( neglect the active resistance ). 

 Calculate the reactance of the inductor if the short-circuit current is to be equal to at 

most three times the rated current. 

 

Solution : 

 The passage of rated current through the furnace circuit corresponds to the rated 

reactance, which is 100 % in percentage terms. Three times the rated current corresponds to a 

condition where the reactance of the circuit drops to 1/3, i.e. to 33.3 %. This reactance 

includes the reactances of the feeders ( 5 % ) and the short-circuit voltage, i.e. the reactance of 

the furnace transformer ( 5 % ). 



 The reactance remains on the choke: 

 xtl = 33.3 - ( 5 + 5 ) = 23.3 % 

 Xtl = 0.233 Xn = 0.233 Uf / In = 0.233 Us
2 / Sn = 0.233 60002 / 6 106 = 1.39   

 

Short Path Electric Arc Furnace 

 

 The short path of the electric arc furnace starts at the terminals of the secondary 

winding of the furnace transformer and ends with the electric arc burning between the 

electrode and the insert. The parameters of the short path (its active resistance and reactance) 

are important because they allow us to derive the parameters of the el. In the furnace working 

area, where the measurement of these parameters would be technically very difficult. 

 Diagnostic measurements on electric arc furnaces are usually carried out at the 

beginning of the short path and by correcting for the parameters of this short path, the 

adjustment of the furnace control is carried out on the basis of the values of the electrical 

quantities on the arcs. 

 

 The relationship between the electrical quantities at the beginning and end of the short 

path is shown in the following phase diagram: 
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In the diagram it indicates 

 

 U . . . . . . measured voltage at the beginning of the short path 

 R I . . . . . . voltage drop across the short path active resistance 

 X I . . . . . . voltage drop across the short path reactance 



 I . . . . . . . . . the current through the furnace circuit 

 ATob . . . . . voltage at the electric arc of the furnace 

 

Example 1 : 

 A furnace transformer feeding a 15 ton steel arc furnace has a rated apparent power of 

Sn = 5 MVA and is connected to the grid at U1 = 6000 V. The voltage on the secondary side is 

220 V, the total short path voltage drop when the rated current is passed is U n = 100 V. 

Determine the following values ( neglecting the short path active resistance ) : 

 

 - rated primary current of furnace transformer I1n 

 - rated secondary current of furnace transformer I2n 

 - secondary short circuit current I2k 

 - arc voltage Uob 

 - active power on arcs Pob 

 - effect at the beginning of a short journey cosn 

 

Solution : 

 

 Rated primary current of furnace transformer : 
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 Rated secondary current of furnace transformer : 
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 Voltage on the arc : 
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 Active power on curves : 
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Effect at the beginning of a short journey : 
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 Calculation of short path parameters of electric arc furnace 

 

 

Assignment : 

 

 Calculate the active resistances and reactances of the short path of an electric arc 

furnace, determine the theoretical short circuit and short circuit current, construct a circle 

diagram of the furnace and determine from it : 

 

- current corresponding to the maximum active power on the electric arc 

- the value of the maximum active arc power 

- power factor corresponding to the maximum active arc power 

- furnace efficiency at maximum active arc power 

 

 

Entered values : 

 

voltage on the primary side of the furnace transformer  3 x 380 / 220 V 

voltage on the secondary side of the furnace  transformerU2 = 55 V 

specific resistivity of the electrode material  E = 10  mm 2 m-1 

specific resistance of the material of the other parts Cu = 1/45  mm 2 m-1 

sum of short path contact resistances   Rss = 2 10 -5 

voltage drop across the contact resistance of the jaws   Usč = 0.5 V 

relative reactance of the inductor     x = 20 % 

apparent power of the furnace transformer   Sn = 150 kVA 

short-circuit losses of furnace transformer   P2k = 1.5 kW 

short-circuit voltage of furnace transformer   ek = 6% 

 

 

 The skin effect and the proximity effect are neglected, the arrangement and dimensions 

of the individual parts of the short path are clear from the figure. 

 

Solution : 
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Inductor reactance converted to the secondary side of the furnace transformer : 
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Neglect the active resistance of the inductor: 0R T1   

 

 

Furnace transformer : 

 

Determine the active resistance from the short-circuit losses : 
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Reactance : 
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Bifilar lines : 

 



   
 

 

 

Inductance of conductor 1 : 
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     mm12.732550.2235bhmre   

 

  bh0.2235re    valid for rectangular cross-section 

 r0.778re     valid for circular cross-section 

 

De  is read from the graph and is a function of
h

D
a

h

b
  ( see appendix ) 
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After substituting l = 2530 mm, b = 2 mm, h = 55 mm, D = 20 mm the result is : 

 



H100.380LH102.139MH102.519L 6
1

6
21

6
11

 
 

 

Reactance and active resistance : 

 

   36
1B1 100.119100.380502Lf2X   

 

 


 3
CuB1 100.511

552

2.53

45

1

S

l
R   

 

 

After converting from a triangle to a star : 

 

   33
B1B 100.080100.119

3

2
X

3

2
X  

 

   33
B1B 100.365100.511

3

2
R

3

2
R  

 

Webbing : 

 

   
 

Inductance of one phase : 

 

 3121111 M
2

1
M

2

1
LL   

 

 

 For the calculation of the self-inductance L11 and the mutual inductances M21 , M31 the 

same calculation relations as for bigilar lines apply. 

 

After re  , we'll put     .mm13.4110500.2235bhmre   

After eD  we put mm300DDe   in case of M21 , and 

mm6003002D2De   

in the case of the M calculation31  . 



 

 

After substituting l = 1150 mm, b = 10 mm, h = 50 mm, D = 300 mm the result is : 

 

H100.078MH10.2370MH10.9510L 6
31

6
21

6
11

   

 

H100.636L 6
1

  

 

 

Reactance and active resistance of one phase : 

 

   36
1p1 100.200100.636502Lf2X   

 

 


 3
Cup1 100.05

5010

1.15

45

1

S

l
R   

 

 

 

 

Flexible cables : 

 

 

 

 4
141312e aaarr   

 

 3
231312e dddD   

 
 

 

 

  cmH;1005.0
r

D
log2.3l2L 9

e

e
k









  

 

 

After substituting l = 1300 mm, a = 200 mm, d = 19.55 mm, D = 300 mm the result is : 

 

   mm141.40.70720045sinaaa o
1412   

 



 mm9.775
2

19.55

2

d
r   

 

 mm79.07141.1200141.49.775r 4
e   

 

 mm377.98300600300D 3
e   

 

 H100.419L 6
k

  

 

 

Reactance and active resistance of one phase : 

 

   33
kok 100.131100.419502Lf2X   

 

 


 3

2Cuok 100.05
4

1

4

19.55

1.3

45

1

S

l
R


  

 

 

 

Double webbing : 

 

   
 

 

Inductance of conductor 1 : 

 

 21111 MLL   

 

For the calculation of the self-inductance L11 and the mutual inductance M21 , the same 

relationships as for bifilar lines apply. 

 

 

After re  , we'll put     mm12.292530.2235bhmre   



The dimension De  is subtracted from the graph 









h

D
,

h

b
fDe  for 0.0377

53

2

h

b
  

and 1.06
D

De   holds for 1.3396
53

71

h

D
  , so 

mm75.26711.06D1.06De   

 

 

After substituting l = 710 mm, b = 2 mm, h = 53 mm, D = 71 mm the result is : 

 

H100.805LH10.2740MH10.5310L 6
1

6
21

6
11

 
 

 

 

Reactance and active resistance of one phase : 

 

 


 


3
6

1
p2 100.126

2

100.805
502

2

L
f2X   

 

 


 3
Cup2 100.074

2532

0.71

45

1

S

l
R   

 

 

 

Electrodes : 

 

 

 

 

 mm37.5rre   

 

 

 mm167DDe   

 

  
 

 

 



  L 2 l 2.3 log
D

r
10 H;cmE

e

e

9    








 

0 05.  

 

After inserting l = 1800 mm, r = 37.5 mm, D = 167 mm the result is : 

 

 H100.246L 6
E

  

 

 

Reactance and active resistance of one phase : 

 

   36
EE 100.07710246.0502Lf2X   

 

 



 3

2EE 10.8111
75

40.8
01

S

l
R


  

 

 

Short path contact resistors : 

 

  3
ss 100.02R  

 

 

Contact resistance of the jaws : 

 

 


 3

2S
sŹ

100.318
1574.6

0.5

I

U
R  

 

 

Reactance, active resistance and short path impedance : 

 

  3102.864RR  

 

  310.8535XX  

 

  322 106.516XRZ  

 

 

Short circuit current : 

 

 A104.873
106.5163

55

Z

U
I 3

3

2f
k 





 

 



Theoretical short circuit current : 

 

 A105.425
105.8533

55

X

U
I 3

3

2f
kT 





 

 

Scales for constructing a circle diagram : 

 

 Choose the diameter of the circle diagram d = 200 mm 

 

Scale of current : 

 

 A/mm27.125
200

5425

d

I
m kT

I   

 

Scale of active performance : 

 

 W/mm861.3
3

27.125
55mUm I2fP   

 

 

  Circular diagram of electric arc furnace 

 

 

 
 

 

 

 IPM = 2.9 kA   cosM = 0.82  PM = 53.4 kW 

 

 

 



INDUCTION AND DIELECTRIC ELECTROTHERMAL DEVICES 

 

B.4.1. Induction channel furnaces 

 

 Channel induction furnaces are built directly on the mains frequency. The molten 

charge in the circular channel forms a single secondary short thread. They have a better power 

factor because the magnetic flux passes through an iron core made of electrical sheets. The 

disadvantage is that molten metal must be poured into them during the first melting. 

 

Example 1 : 

 Design an induction channel furnace with power P = 100 kW, voltage U1 = 220 V, 

magnetic induction in the core B = 1.2 T, frequency f = 50 Hz. 

 Other initial data : cos = 0.5, coefficient c = 0.34, = 9.1, current density in primary 

winding = 3 A mm-2 , N2 = 1. 

  

 Determine : 

- iron core cross section SFe , if 
fB

10S
cS

5

Fe








     ( cm )2 

- primary winding current I1 

- cross-section of the primary winding conductor Scu 

- number of primary threads N1 

- voltage on the secondary side U2 

- current on the secondary side I2 

 

Solution : 

 

 Cross section of iron core : 

 

  
2

55

Fe cm342
5031.2

109.1200
0.34

fB

10S
cS 














 

 

 

 

 Current through the primary winding : 

 

  A909
2200.5

10100

Ucos

P

U

S
I

3

11

1 









 

 

 Primary winding conductor cross section : 

 

  
21

Cu mm303
3

909I
S 


 

 

  



Number of primary threads : 

 

 

závit ů2524.1
500.03421.24.44

220

fSB4.44

U
N

Fe

1
1 







  

 

 

 Voltage on the secondary side : 

 

  V9.17
25

220

N

U
U

1

1
2   

 

 Current on the secondary side : 

 

  A2181690925INI 112   

Induction cup furnaces 

 

 A medium frequency crucible induction furnace consists of a crucible made of non-

conductive material around which is a coil fed from a special frequency source of 500 - 10 

000 Hz (tooth generator, power electronic oscillator). The coil is usually made of a copper 

tube through which cooling water flows. The efficiency of the furnace is very low (0.05 - 0.3) 

and is usually compensated by a capacitor bank connected in parallel, which is tuned to 

resonance with the inductance of the furnace during melting. 

 

Example 1 : 

 The replacement induction crucible furnace scheme has the following parameters : 

inductance of the oven  LI = 1.3 10-4 H 

active resistance of the furnace RI = 4 10 -2 

Capacitance of capacitor battery C = 2.2 10-4 F 

supply frequency   f  = 1000 Hz 

supply voltage    UG = 2500 V 

 

 Determine : 

- current drawn from the generator IG 

- Furnace current IP 

- capacitor bank current IC 

- resonant circuit quality factor Q 

 

Draw a vector diagram. 

 

Solution : 

 

 Replacement resistance : 

 



  









14.75

104102.2

101.3

RC

L
R

24

4

I

I
Z  

 

 

 Current drawn from the generator : 

 

  A169.4
14.75

2500

R

U
I

Z

G
G   

 

 Resonant circuit quality factor : 

 

  20.4
104

101.3102

R

L
Q

2

43

I

I 











 

 

 Capacitor battery current : 

 

  A3460102.21022500CUI 43
GC    

 

 Furnace current : 

 

  I
I 1 Q

Q

3460 1 20.4

20.4
3465 AP

C
2 2


 


 

  

 

 Vector diagram : 

 

                            UG 

 

 

 

 

 

   

 

 

 

 

 

 

 

            I IG     P 

        IC  

 

 

 



 

Example 2 : 

 Determine the losses in the coil of an induction crucible furnace if the replacement coil 

diameter dC = 1200 mm , the number of coil turns N1 = 16, the specific resistance of the coil 

conductor = 0.0175  mm 2 m-1 , penetration depth a = 0.284 cm, coil voltage UG = 3000 

V, coil active resistance RI = 5.2 10 -2 , 

Inductance of coil LI = 1.3 10-4 H, frequency of generator f = 600 Hz, length of coil l1 = 1.2 

m, electric field strength in coil E = 150 V cm-1 . 

 

Solution : 

 Determine the active resistance of the coil from the relation : 

 

  
xa

Nd

S

l
R 1C

1






  

 

       where x . . . . . . . 

 

 

 The conductor height is derived from the relation for the electric field strength : 

 

          
  y1N

U
E

1

G


  

 

          
   

y
U

N 1 E

3000

16 1 150
13.33 mmG

1


 


 

  

 

          
   

x
l N 1 y

N

1200 16 1 13.33

16
62.5 mm

1 1

1


  


  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a 

y 

x 

l1 



 

 

 Coil active resistance : 

 

  








 31C

1 106
62.52.84

161.22
0.0175

xa

Nd
R


  

 

 Current flowing through the coil : 

 

     
A6087

101.36002105.2

3000

LR

U
I

24222

I
2
I

G
p 







 

 

 

 Induction furnace coil losses : 

 

  W10222.36087106IRP 3232
p1z  

 

 

Dielectric heating 

 

 Dielectric heating occurs in electrically non-conductive materials placed in the electric 

field of a capacitor connected to a high frequency source. Frequencies on the order of 106 - 109 

Hz  are used for dielectric heating. The fastest heating is for a frequency with a period 

close to the relaxation time of the material. 

 

 

Example 1 : 

 

 Determine the power and voltage of the generator for dielectric heating of the material 

from1 = 20 °C to2 = 180 °C. Specific heat capacity of the material c = 0.35 kcal/kg K, 

relative permittivityr = 5, loss factor tg = 0.035, specific gravity = 900 kg/m3 . 

 The mass of the charge is m = 10 kg , the frequency of the source is f = 25 Mhz, the 

thickness of the heated material is d = 50 mm , the heating time is t = 20 min. 

 

Solution : 

 

 We start from the relationship : 

 

  P = U I cos = U 2   C tg 

 

 Generator voltage : 

 

 



 U
P

C tg

P

2 f S

d
tg

m c

t

2 f tg
m

d

o r
o r 2


 


    





 

     


    
    





 

 

 

   
U

c d

2 f t tg

0.35 4.186 10 180 20 900 5 10

2 8.854 10 5 25 10 20 60 0.035
1338 V

2

o r

3 2
2

12 6


  

     


      

        






 

    
 

 

 

 

 Generator output : 

 

 
 

W1956
6020

20180104.1860.3510

t

cm
P

3

G 






  

 

 

 

Example 2 : 

 

 Determine the gradients (voltage gradients ) and volumetric heat outputs on the 

formulas loaded into the dielectric furnace if given : 

 

 Generator :  UG = 1200 V , f = 5 Mhz 

 the first sample :  1 = 6 , tg1 = 0.04 , d1 = 30 mm 

 second sample :  2 = 30 , tg2 = 0.08 , d2 = 50 mm 

 

Solution : 

 

 Arrangement of samples : 

 

 

 

 

 

 

 

 

 

 

 Stress gradient in the first sample : 

 

UG 

1 , d1 , tg1 

2 , d2 , tg2 



 

1

2

2

1

1
1

1

1
1 mV38700

30

0.05

6

0.03
6

1200

dd

U

d

U
E 




























 

 

 Stress gradient in the second sample : 

 

1

2

2

1

1
2

2

2
2 mV7740

30

0.05

6

0.03
30

1200

dd

U

d

U
E 




























 

 

 Volumetric heat output in the first sample : 

 

P1 = E 1
2 2   f o  r1  tg 1 

 

P1 = 38700 2 2   5 10 6 8.854 10 -12 6 0.04 = 99.98 kW m-3 

 

 

 Volumetric heat output in the second sample : 

 

P2 = E 2
2 2   f o  r2  tg 2 

 

P2 = 7740 2 2   5 10 6 8.854 10 -12 30 0.08 = 40 kW m-3 

 

 

Symmetrization 

 

 Induction furnaces cause asymmetry in the three-phase network with their single-phase 

load. In  order to remove this asymmetry, inductance and capacitance are inserted into 

the other phases, either in a star or triangle arrangement. 

 

 

Example 1 : 

 

 Design a symmetrizing circuit for an induction cup furnace connected to a 3x380/220 

V, 50 Hz star network. Generator input Pg = 200 kW. Determine the magnitudes of 

capacitance, inductance and currents and voltages in all branches. 

 

 

Solution : 

 

 Replacement load resistor : 

 



  
   








 2.17

10200

2203

P

U3

P

U
R

3

2

g

2

f

g

2
R

z  

 

 Required inductance : 

 

  H103.98
5023

2.17

3

R
L 3z 








 

 

 Required capacity : 

 

  F102.54
2.17502

3

R

3
C 3

z










 

 

 

 Currents through individual branches : 

 

  A304
2.17

2203

R

U3

R

U
III

z

f

z

R
CLR 





  

 

 Voltage on the furnace : 

 

  UR = 3 Uf = 3 220 = 660 V 

 

 

 Voltage on inductance : 

 

  UL = 3 Uf = 3 220 = 380 V 

 

 

 Voltage at capacity : 

 

  UC = 3 Uf = 3 220 = 380 V 

 

 

 



 Symmetrizing device connected to the star

  
 

 

 

 

 

Vector diagram      

 

                                                                                                     UR 

 

          -UC 

 

       UC    U L UUV 

 

                                    IR 

 

              -UL 

             

                                                                             UUW IC   IL 

 

 

              UVW 

 

 

Example 2 : 

 

 Design a symmetrizing circuit for a 1000 kg steel induction crucible furnace connected 

directly to a 3x380 V, 50 Hz grid connected in a triangle. Determine the required capacitance 

and inductance and all currents. Power input Pg = 250 kW. 

 

Solution : 

 

 Replacement load resistor : 

 



  


 0.575
10250

380

P

U
R

3

2

g

2
R

z  

 

 

 Searched symmetrization capacity : 

 

  F103.2
0.5755023

1

R3

1
C 3

z










 

 

 

 Search symmetrization inductance : 

 

  H103.18
502

0.5753R3
L 3z 










 

 

 

 Currents in feeders : 

 

  A382
0.575

220

R

U
III

z

f
WVU   

 

 

 Furnace current : 

 

  A660
0.575

380

R

U
I

z

R
R   

 

 

 Current Capacity : 

 

  IC = IR / 3 = 660 / 3 = 382 A 

 

  

 Current inductance : 

 

  IL = IR / 3 = 660 / 3 = 382 A 

   

 

 

 

 

 

 



 

 
 

 

  Symmetrizing device connected in a triangle 

 

 

 

 

 

 

          U UV UC 

 

 

        IV 

 

         IC 

   IR 

 

  U UW UR 

              IW 

      I L IU 

 

 

 

                 U VW UL 

 

 

    Vector diagram 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 


