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ABSTRACT 

This work suggests a method of solving Fourier-Kirchhoff differential equation using method variable separation and from this pieces of knowledge we can set off the criterias which have connection with energetic optimisation of direct resistance heating.

1. Fourier-Kirchhoff differential equation for  

     transmission of heat in a solid medium with internal    

     source of heat. 

Fourier-Kirchhoff differential equation generally describes the distribution of heat in a solid medium with respect to time taking into account both, the existence of an internal source of heat as well as dissipation of heat from the surface. When employed for solving real cases, the equation has following form:
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  Where:

        a
 
is a coefficient of heat transmisivity




           [m2/s]

        c 

is heat capacity     

  


                               [J/kg K]

        ρ 

is unit weight of the matter       




         [kg/m3]

        σ 

is volume density of the power of the internal source
  
         [W/m3]

        α 

is a overall coefficient of transmisivity of heat 


      [W/m2K]
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is Laplace’s operator applied on heat

        dV 
is an elementary volume of a body bordered by the area dA

  [m3]

        dA
is an elementary area through which a part of the heat flow transits to the 

                       ambient environment
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is a difference in temperatures of the body and the surrounding environment at a given time and location. 
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the operator 
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 stands for a scalar quantity, in case of one dimensional advection, the form of the expression is as follows
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in cartesians coordinates                                                             (3)
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   in cylindrical coordinates                                                            (4)
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in spherical coordinates                                                              (5)

The volume density of the power σ represents the amount of heat in Joules which is formed in a unit volume during a unit time, for example during the transit of current through the body (Joule’s heat).

2.  Mathematical model of heating up of cylindrical load by  

     altering current considering the heat loss

-  the material of the load is homogenous, isotropic and all its parameters  

      (resistivity, unit heat conductivity, c –specific latent heat, density) are constant and 

      independent on the temperature (
· At the time t=0, all items of the load are of the constant temperature which is equal to the ambient of ambient environment (ok  . 
· The thermal losses to the ambient environment sideways from the surface of the load are considered (the thermal losses from the front surfaces of the load are equal to zero), whereby the heat-transfer coefficient is constant  (convection and radiation).
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Fig. 1. Schema of cylindrical rod

The current is not distributed evenly throughout the cross section of the load. As a consequence, both specific output as well as the current density is not distributed evenly as well. The current will try to flow through the path of the smallest impedance, i.e. on the surface of the load. The current density distribution through the cross sectional area of the load is describable by following equation provided that ((((((
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where: 
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where: 
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The abovementioned expression represents the depth of penetration to the load.

The resulting expression of the distribution of the current density in relation to the diameter can be presented as follows:
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 Bessel’s cylindrical function of complex argument
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        Current density on the surface of the load

 Fourier-Kirchhoff differential equation of heat transfer with an internal source :
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            rearranged as: 
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            where:
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-  specific output of the internal source                                    (13)
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   -           Laplace’s operator applied on the temperature (   (15)

For cylindrical coordinates: 
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By substituting of 16. to 12., form of Fourier Kirchhoff differential equation of heat transfer with internal source for cylinder can be obtained: 
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The equation 18. can be transformed to dimensionless quantities: 
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 Fourier’s criterion, i.e. dimensionless time 
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By substituting of 19. and 20. to 17. and by suitable modification, following expression can be obtained: 
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When relative temperature is introduced: 
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By further modification  24 to 22, final form of F-K equation is obtained in relative quantities for heat up of cylinder with heat losses:
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Obtained form of F-K equation 25 is a basic expression from which further models of the field of temperature at a direct resistance heat up of a cylindrical load in dimensionless quantities can be derived. 

It is possible to obtain following expression by employing an analytical method of separation of variables. The equation describes the distribution of temperature throughout the cross section of a cylindrical rod with time.
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Considering the form of the expression, it is evident that it would be almost impossible to solve this equation without using a computer.

3. Conclusion

To conclude, it is necessary to mention that the calculation does not take into account the changes of electrical conductivity, heat capacity, specific heat conductivity of the load and the change of permeability with the change of the temperature. 
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